

Subdirecció General de Seguretat Industrial Servei d'Automòbils i Metrologia Secció de Metrologia

TEST CERTIFICATE

Fifth addition to number E-01.02.C07

LOAD CELL TYPE TA-1

Issued by:

Secretaria d'Indústria - Generalitat de Catalunya (Notified Body number 0315)

Avinguda de la Diagonal, 405 bis

E-08008 BARCELONA

SPAIN

In accordance with:

Paragraph 8.1 of the European Standard "Metrological aspects of non-automatic weighing instruments" EN 45501:1992(+AC:1993). The applied error fraction p_i with reference to paragraphs 3.5.4 and 4.12 of this standard is 0,7. Following paragraph 4.12 of this standard, the tests have been performed according to the OIML

International Recommendation, OIML R 60 (2000).

Issued to:

SENSOCAR, S.A.

Carrer Gèminis, 77, nau 2, P.I.Can Parellada

E-08228 TERRASSA

SPAIN

In respect of:

the model of a load cell, tested as part of a non-automatic weighing instrument.

Manufacturer: SENSOCAR, S.A.. Type: TA-1, versions TA-0 and TA-1.

This fifth addition complements the test certificate number E-01.02.C07, relating to

addition of a new minimum dead load output return in version TA-1.

Characteristics:

Version	TA-0											
Classification	C4↓ C6↓											
Maximum number of LC verification intervalsn _{LC}	4000 6000											
Maximum capacity E _{max}	30	50	75	100	150	200	250	300	400	500	750	kg
Ratio minimum LC verification interval $Y=E_{max}/v_{min}$		T Fig.				15000						
Version			-			TA-1						
Classification						C4↓						
Maximum number of LC verification intervalsn _{LC}			71			4000						
Maximum capacity E _{max}	40	0	500		750		1000		1500	20	000	kg
Ratiominimum LC verification interval Y=E _{max} /v _{min}						15000				, , , , , , , , , , , , , , , , , , , ,	- 3	

additional marking

temperature limits -10°C/+40°C

rated output C = 2 mV/V impedance input $R_{LC} = 350 \Omega$

minimum dead load $E_{min} = 0 \text{ kg}$

safe overload E_{lim}/E_{max}= 150%

The main characteristics are shown in the descriptive annex, which is an integral part of the test certificate and consists of 4 pages. The type is described in the submitted technical documentation, identified with number 15/01. The first addition is described in the submitted technical documentation, identified with number 23/02. The second addition is described in the submitted technical documentation, identified with number 13/04. The third addition is described in the submitted technical documentation, identified with number 17/04. The fourth addition is described in the submitted technical documentation, identified with number 02/05. The changes covered by this addition are described in the submitted additional technical documentation, identified with number 22/06.

For delegation of Secretari d'Indústria

THE HEAD OF THE SERVICE OF AUTOMOBILES AND METROLOGY

Lluís Gasull i Poch

Barcelona, 21 November 2006

Generalitat de Cataluntyn
Departement de Troball I indústria
Secretaria d'Endústria
Subdirecció General de Seguretat Industria
Servel d'Automòbils I Metrologia
Earcelona

This document shall not be reproduced except in full, with the annex. This test certificate refers only to metrological requirements. This test certificate cannot be used without aplicant's authorization.

Secretaria d'Indústria

Subdirecció General de Seguretat Industrial Servei d'Automòbils i Metrologia Secció de Metrologia

Page 1 of 4

Descriptive annex to fifth addition to the test certificate number E-01.02.C07.

0.- Index.

1 Name and type of the instrument.	2
2 Description of the modification.	2
3 Text after modification.	3
3.1 - Metrological characteristics	3

Subdirecció General de Seguretat Industrial Servei d'Automòbils i Metrologia Secció de Metrologia

Page 2 of 4

Terrosii i Indústria

coloria o la coloria colo Ganeral de Regal dat Industrial

Servei d'Automòbils i Metrologia

Descriptive annex to fifth addition to the test certificate number E-01.02.C07.

1.- Name and type of the instrument.

Load cell type TA-1.

Manufactured by:

SENSOCAR, S.A. Carrer Géminis, 77, nau 2, P.I.Can Parellada E-08228 TERRASSA SPAIN

Using the mark:

SENSOCAR

2.- Description of the modification.

This annex to fifth addition to the test certificate number E-01.02.C07 describes a modification of the type TA-1, versions TA-0 and TA-1.

This fifth addition to the test certificate number E-01.02.C07 is relating to addition of a new minimum dead load output return in version TA-1.

This fifth addition to the test certificate number E-01.02.C07 affects paragraph 3.2 of the annex to fourth addition number E-01.02.C07.

Paragraph 2 of the annex to the test certificate number E-01.02.C07 and paragraph 3.1 of the annex to first addition number E-01.02.C07 were modified and replaced for paragraph 3.1 of the annex to fourth addition number E-01.02.C07.

Paragraph 3.1 of the annex to the test certificate number E-01.02.C07, paragraph 3.2 of the annex to first addition number E-01.02.C07, paragraph 3.1 of the annex to second addition number E-01.02.C07 and paragraph 3.1 of the annex to third addition number E-01.02.C07 were modified and replaced for paragraph 3.2 of the annex to fourth addition number E-01.02.C07

Paragraph 4 of the annex to the test certificate number E-01.02.C07 and paragraph 3.3 of the annex to first addition number E-01.02.C07 were modified and replaced for paragraph 3.2 of the annex to second addition number E-01.02.C07.

Paragraph 7 of the annex to the test certificate number E-01.02.C07, paragraph 3.2 of the annex to first addition number E-01.02.C07 and paragraph 3.3 of the annex to second addition number E-01.02.C07 were modified and replaced for paragraph 3.3 of the annex to fourth addition number E-01.02.C07

Figure 3 of the annex to the test certificate number E-01.02.C07 and Figure 3 of the annex to first addition number E-01.02.C07 were modified and replaced for new Figure 3 of the annex to second addition number E-01.02.C07.

Av. Diagonal, 405 bis 08008 Barcelona Telèfon 93 484 92 95 Telefax 93 484 94 10 Subdirecció General de Seguretat Industrial Servei d'Automòbils i Metrologia Secció de Metrologia

Page 3 of 4

Descriptive annex to fifth addition to the test certificate number E-01.02.C07.

3.- Text after modification.

Paragraph 3.1 of the annex to the test certificate number E-01.02.C07, paragraph 3.2 of the annex to first addition number E-01.02.C07, paragraph 3.1 of the annex to second addition number E-01.02.C07, paragraph 3.1 of the annex to third addition number E-01.02.C07 and paragraph 3.2 of the annex to fourth addition number E-01.02.C07 become in paragraph 3.1 of this descriptive annex.

3.1.- Metrological characteristics.

Load cell type TA-1, version TA-0, has the following metrological characteristics and information for compatibility of modules:

Version		TA-0										
Classification		C4↓ C6↓										
Additional marking												
Maximum number of number o	LC	4000 6000					-					
Constructive material	S	Steel or stainless steel Steel										
Maximum capacity E _r	_{nax} 30	50	75	100 _	150	200	250	300	400	500	750	kg
Minimum dead load, relative E_{min}/E_{m}	ax	Te V	3.3			0						%
Ratio of minimum LC $Y = E_{max}/v_n$ verification interval		15000						-				
Minimum dead load $Z = E_{max}/2D$ output return	R	6000										
Rated output	C	2					mV/V					
Maximum excitation voltage			- 1			15	35					V
Input impedance R _I	С	350					Ω					
Minimum limit temperature rating T_n	nin					-10	U					°C
	nax		1	,		+40				*/		°C
Safe overload E_{lim}/E_{rr}		150						%				
F	LC	0,7										

Load cell type TA-1, version TA-0, can have other maximum capacities from 30 kg to 750 kg, respecting always its metrological and constructive characteristics, according to OIML R60.

Load cell type TA-1, version TA-1, has the following metrological characteristics and information for compatibility of modules:

Version				TA	A-1			
Classification			, II, II	С	4↓			
Additional marking				_				
Maximum number of LC verification intervals	n_{LC}	4000						
Constructive material		Steel or stainless steel						
Maximum capacity	E_{max}	400	500	750	1000	1500	2000	kg
Minimum dead load, relative	E_{min}/E_{max}	0					%	

Secretaria d'Indústria

Subdirecció General de Seguretat Industrial Servei d'Automòbils i Metrologia Secció de Metrologia

Page 4 of 4 Descriptive annex to fifth addition to the test certificate number E-01.02.C07.

Ratio of minimum LC $Y = E_{max}/v_{min}$ verification interval	15000	-
Minimum dead load $Z = E_{max}/2DR$ output return	6000	
Rated output C	2	mV/V
Maximum excitation voltage	15	V
Input impedance R _{LC}	350	Ω
Minimum limit temperature rating T_{min}	-10	°C
Maximum limit temperature rating T_{max}	+40	°C
Safe overload E_{lim}/E_{max}	150	%
Fraction maximum permissible error p_{LC}	0,7	

Load cell type TA-1, version TA-1, can have other maximum capacities from 400 kg to 2000 kg, respecting always its metrological and constructive characteristics, according to OIML R60.

Another characteristics are:

Tolerance of nominal sensitivity	± 0.02	mV/V
Tolerance of input impedance	± 5	Ω

Av. Diagonal, 405 bis 08008 Barcelona Telèfon 93 484 92 95 Telefax 93 484 94 10

